Home » Java » Generating all permutations of a given string

Generating all permutations of a given string

Posted by: admin November 2, 2017 Leave a comment

Questions:

What is an elegant way to find all the permutations of a string. E.g. ba, would be ba and ab, but what about abcdefgh? Is there any example Java implementation?

Answers:
public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(via Introduction to Programming in Java)

Questions:
Answers:

Use recursion.

  • Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
  • The base case is when the input is an empty string the only permutation is the empty string.
Questions:
Answers:

Here is my solution that is based on the idea of the book “Cracking the Coding Interview” (P54):

/**
 * List permutation of a string
 * 
 * @param s the input string
 * @return  the list of permutation
 */
public static ArrayList<String> permutation(String s) {
    // The result
    ArrayList<String> res = new ArrayList<String>();
    // If input string's length is 1, return {s}
    if (s.length() == 1) {
        res.add(s);
    } else if (s.length() > 1) {
        int lastIndex = s.length() - 1;
        // Find out the last character
        String last = s.substring(lastIndex);
        // Rest of the string
        String rest = s.substring(0, lastIndex);
        // Perform permutation on the rest string and
        // merge with the last character
        res = merge(permutation(rest), last);
    }
    return res;
}

/**
 * @param list a result of permutation, e.g. {"ab", "ba"}
 * @param c    the last character
 * @return     a merged new list, e.g. {"cab", "acb" ... }
 */
public static ArrayList<String> merge(ArrayList<String> list, String c) {
    ArrayList<String> res = new ArrayList<String>();
    // Loop through all the string in the list
    for (String s : list) {
        // For each string, insert the last character to all possible postions
        // and add them to the new list
        for (int i = 0; i <= s.length(); ++i) {
            String ps = new StringBuffer(s).insert(i, c).toString();
            res.add(ps);
        }
    }
    return res;
}

Running output of string “abcd”:

  • Step 1: Merge [a] and b:
    [ba, ab]

  • Step 2: Merge [ba, ab] and c:
    [cba, bca, bac, cab, acb, abc]

  • Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
    [dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]

Questions:
Answers:

Of all the solutions given here and in other forums, i liked Mark Byers the most. That description actually made me think and code it myself.
Too bad i cannot voteup his solution as i am newbie.
Anyways here is my implementation of his description

public class PermTest {

public static void main(String[] args) throws Exception {
    String str = "abcdef";
    StringBuffer strBuf = new StringBuffer(str);
    doPerm(strBuf,str.length());

}

private static void doPerm(StringBuffer str, int index){

    if(index <= 0)
        System.out.println(str);            
    else { //recursively solve this by placing all other chars at current first pos
        doPerm(str, index-1);
        int currPos = str.length()-index;
        for (int i = currPos+1; i < str.length(); i++) {//start swapping all other chars with current first char
            swap(str,currPos, i);
            doPerm(str, index-1);
            swap(str,i, currPos);//restore back my string buffer
        }
    }
}

private  static void swap(StringBuffer str, int pos1, int pos2){
    char t1 = str.charAt(pos1);
    str.setCharAt(pos1, str.charAt(pos2));
    str.setCharAt(pos2, t1);
} 
}   

I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer.I wouldn’t say my solution doesn’t create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But i just feel this is better than the first solution where too many string literals are created . May be some performance guy out there can evalute this in terms of ‘memory’ (for ‘time’ it already lags due to that extra ‘swap’)

Questions:
Answers:

A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :

public static Set<String> generatePerm(String input)
{
    Set<String> set = new HashSet<String>();
    if (input == "")
        return set;

    Character a = input.charAt(0);

    if (input.length() > 1)
    {
        input = input.substring(1);

        Set<String> permSet = generatePerm(input);

        for (String x : permSet)
        {
            for (int i = 0; i <= x.length(); i++)
            {
                set.add(x.substring(0, i) + a + x.substring(i));
            }
        }
    }
    else
    {
        set.add(a + "");
    }
    return set;
}

Questions:
Answers:

All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps’ algorithm )

Couple of things:

  1. Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).

  2. The swapping algorithm happens based on even or odd values of current position. It’s very self explanatory if you look at where the swap method is getting called.You can see what’s going on.

Here is what happens:
enter image description here

public static void main(String[] args) {

        String ourword = "abc";
        String[] ourArray = ourword.split("");
        permute(ourArray, ourArray.length);

    }

    private static void swap(String[] ourarray, int right, int left) {
        String temp = ourarray[right];
        ourarray[right] = ourarray[left];
        ourarray[left] = temp;
    }

    public static void permute(String[] ourArray, int currentPosition) {
        if (currentPosition == 1) {
            System.out.println(Arrays.toString(ourArray));
        } else {
            for (int i = 0; i < currentPosition; i++) {
                // subtract one from the last position (here is where you are
                // selecting the the next last item 
                permute(ourArray, currentPosition - 1);

                // if it's odd position
                if (currentPosition % 2 == 1) {
                    swap(ourArray, 0, currentPosition - 1);
                } else {
                    swap(ourArray, i, currentPosition - 1);
                }
            }
        }
    }

Questions:
Answers:

This one is without recursion

public static void permute(String s) {
    if(null==s || s.isEmpty()) {
        return;
    }

    // List containing words formed in each iteration 
    List<String> strings = new LinkedList<String>();
    strings.add(String.valueOf(s.charAt(0))); // add the first element to the list

     // Temp list that holds the set of strings for 
     //  appending the current character to all position in each word in the original list
    List<String> tempList = new LinkedList<String>(); 

    for(int i=1; i< s.length(); i++) {

        for(int j=0; j<strings.size(); j++) {
            tempList.addAll(merge(s.charAt(i), strings.get(j)));
                        }
        strings.removeAll(strings);
        strings.addAll(tempList);

        tempList.removeAll(tempList);

    }

    for(int i=0; i<strings.size(); i++) {
        System.out.println(strings.get(i));
    }
}

/**
 * helper method that appends the given character at each position in the given string 
 * and returns a set of such modified strings 
 * - set removes duplicates if any(in case a character is repeated)
 */
private static Set<String> merge(Character c,  String s) {
    if(s==null || s.isEmpty()) {
        return null;
    }

    int len = s.length();
    StringBuilder sb = new StringBuilder();
    Set<String> list = new HashSet<String>();

    for(int i=0; i<= len; i++) {
        sb = new StringBuilder();
        sb.append(s.substring(0, i) + c + s.substring(i, len));
        list.add(sb.toString());
    }

    return list;
}

Questions:
Answers:

Let’s use input abc as an example.

Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:

"a" + "bc" = ["abc", "bac", "bca"]  and  "a" + "cb" = ["acb" ,"cab", "cba"] 

Thus entire permutation:

["abc", "bac", "bca","acb" ,"cab", "cba"]

Code:

public class Test 
{
    static Set<String> permutations;
    static Set<String> result = new HashSet<String>();

    public static Set<String> permutation(String string) {
        permutations = new HashSet<String>();

        int n = string.length();
        for (int i = n - 1; i >= 0; i--) 
        {
            shuffle(string.charAt(i));
        }
        return permutations;
    }

    private static void shuffle(char c) {
        if (permutations.size() == 0) {
            permutations.add(String.valueOf(c));
        } else {
            Iterator<String> it = permutations.iterator();
            for (int i = 0; i < permutations.size(); i++) {

                String temp1;
                for (; it.hasNext();) {
                    temp1 = it.next();
                    for (int k = 0; k < temp1.length() + 1; k += 1) {
                        StringBuilder sb = new StringBuilder(temp1);

                        sb.insert(k, c);

                        result.add(sb.toString());
                    }
                }
            }
            permutations = result;
            //'result' has to be refreshed so that in next run it doesn't contain stale values.
            result = new HashSet<String>();
        }
    }

    public static void main(String[] args) {
        Set<String> result = permutation("abc");

        System.out.println("\nThere are total of " + result.size() + " permutations:");
        Iterator<String> it = result.iterator();
        while (it.hasNext()) {
            System.out.println(it.next());
        }
    }
}

Questions:
Answers:

Well here is an elegant, non-recursive, O(n!) solution:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }

Questions:
Answers:

One of the simple solution could be just keep swapping the characters recursively using two pointers.

public static void main(String[] args)
{
    String str="abcdefgh";
    perm(str);
}
public static void perm(String str)
{  char[] char_arr=str.toCharArray();
    helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
    if(i==char_arr.length-1)
    {
        // print the shuffled string 
            String str="";
            for(int j=0; j<char_arr.length; j++)
            {
                str=str+char_arr[j];
            }
            System.out.println(str);
    }
    else
    {
    for(int j=i; j<char_arr.length; j++)
    {
        char tmp = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp;
        helper(char_arr,i+1);
        char tmp1 = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp1;
    }
}
}

Questions:
Answers:

Use recursion.

when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.

import java.util.ArrayList;
import java.util.List;

class Permutation {
    private static List<String> permutation(String prefix, String str) {
        List<String> permutations = new ArrayList<>();
        int n = str.length();
        if (n == 0) {
            permutations.add(prefix);
        } else {
            for (int i = 0; i < n; i++) {
                permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
            }
        }
        return permutations;
    }

    public static void main(String[] args) {
        List<String> perms = permutation("", "abcd");

        String[] array = new String[perms.size()];
        for (int i = 0; i < perms.size(); i++) {
            array[i] = perms.get(i);
        }

        int x = array.length;

        for (final String anArray : array) {
            System.out.println(anArray);
        }
    }
}

Questions:
Answers:

this worked for me..

import java.util.Arrays;

public class StringPermutations{
    public static void main(String args[]) {
        String inputString = "ABC";
        permute(inputString.toCharArray(), 0, inputString.length()-1);
    }

    public static void permute(char[] ary, int startIndex, int endIndex) {
        if(startIndex == endIndex){
            System.out.println(String.valueOf(ary));
        }else{
            for(int i=startIndex;i<=endIndex;i++) {
                 swap(ary, startIndex, i );
                 permute(ary, startIndex+1, endIndex);
                 swap(ary, startIndex, i );
            }
        }
    }

    public static void swap(char[] ary, int x, int y) {
        char temp = ary[x];
        ary[x] = ary[y];
        ary[y] = temp;
    }
}

Questions:
Answers:

python implementation

def getPermutation(s, prefix=''):
        if len(s) == 0:
                print prefix
        for i in range(len(s)):
                getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )



getPermutation('abcd','')

Questions:
Answers:
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
    public static void main(String[] args) throws IOException {
        hello h = new hello();
        h.printcomp();
    }
      int fact=1;
    public void factrec(int a,int k){
        if(a>=k)
        {fact=fact*k;
        k++;
        factrec(a,k);
        }
        else
        {System.out.println("The string  will have "+fact+" permutations");
        }
        }
    public void printcomp(){
        String str;
        int k;
        Scanner in = new Scanner(System.in);
        System.out.println("enter the string whose permutations has to b found");
        str=in.next();
        k=str.length();
        factrec(k,1);
        String[] arr =new String[fact];
        char[] array = str.toCharArray();
        while(p<fact)
        printcomprec(k,array,arr);
            // if incase u need array containing all the permutation use this
            //for(int d=0;d<fact;d++)         
        //System.out.println(arr[d]);
    }
    int y=1;
    int p = 0;
    int g=1;
    int z = 0;
    public void printcomprec(int k,char array[],String arr[]){
        for (int l = 0; l < k; l++) {
            for (int b=0;b<k-1;b++){
            for (int i=1; i<k-g; i++) {
                char temp;
                String stri = "";
                temp = array[i];
                array[i] = array[i + g];
                array[i + g] = temp;
                for (int j = 0; j < k; j++)
                    stri += array[j];
                arr[z] = stri;
                System.out.println(arr[z] + "   " + p++);
                z++;
            }
            }
            char temp;
            temp=array[0];
            array[0]=array[y];
            array[y]=temp;
            if (y >= k-1)
                y=y-(k-1);
            else
                y++;
        }
        if (g >= k-1)
            g=1;
        else
            g++;
    }

}

Questions:
Answers:
/** Returns an array list containing all
 * permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
    ArrayList<String> perms = new ArrayList<>();
    int slen = s.length();
    if (slen > 0) {
        // Add the first character from s to the perms array list.
        perms.add(Character.toString(s.charAt(0)));

        // Repeat for all additional characters in s.
        for (int i = 1;  i < slen;  ++i) {

            // Get the next character from s.
            char c = s.charAt(i);

            // For each of the strings currently in perms do the following:
            int size = perms.size();
            for (int j = 0;  j < size;  ++j) {

                // 1. remove the string
                String p = perms.remove(0);
                int plen = p.length();

                // 2. Add plen + 1 new strings to perms.  Each new string
                //    consists of the removed string with the character c
                //    inserted into it at a unique location.
                for (int k = 0;  k <= plen;  ++k) {
                    perms.add(p.substring(0, k) + c + p.substring(k));
                }
            }
        }
    }
    return perms;
}

Questions:
Answers:

Here is a straightforward minimalist recursive solution in Java:

public static ArrayList<String> permutations(String s) {
    ArrayList<String> out = new ArrayList<String>();
    if (s.length() == 1) {
        out.add(s);
        return out;
    }
    char first = s.charAt(0);
    String rest = s.substring(1);
    for (String permutation : permutations(rest)) {
        out.addAll(insertAtAllPositions(first, permutation));
    }
    return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
    ArrayList<String> out = new ArrayList<String>();
    for (int i = 0; i <= s.length(); ++i) {
        String inserted = s.substring(0, i) + ch + s.substring(i);
        out.add(inserted);
    }
    return out;
}

Questions:
Answers:

This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it’s done independently.

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

which generates Output as [abc, acb, bac, bca, cab, cba].

Basic logic behind it is

For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.

  1. a->[bc](a x Combination of (bc))->{abc,acb}
  2. b->[ac](b x Combination of (ac))->{bac,bca}
  3. c->[ab](c x Combination of (ab))->{cab,cba}

And then recursively calling each [bc],[ac] & [ab] independently.

Questions:
Answers:
//Rotate and create words beginning with all letter possible and push to stack 1

//Read from stack1 and for each word create words with other letters at the next location by rotation and so on 

/*  eg : man

    1. push1 - man, anm, nma
    2. pop1 - nma ,  push2 - nam,nma
       pop1 - anm ,  push2 - amn,anm
       pop1 - man ,  push2 - mna,man
*/

public class StringPermute {

    static String str;
    static String word;
    static int top1 = -1;
    static int top2 = -1;
    static String[] stringArray1;
    static String[] stringArray2;
    static int strlength = 0;

    public static void main(String[] args) throws IOException {
        System.out.println("Enter String : ");
        InputStreamReader isr = new InputStreamReader(System.in);
        BufferedReader bfr = new BufferedReader(isr);
        str = bfr.readLine();
        word = str;
        strlength = str.length();
        int n = 1;
        for (int i = 1; i <= strlength; i++) {
            n = n * i;
        }
        stringArray1 = new String[n];
        stringArray2 = new String[n];
        push(word, 1);
        doPermute();
        display();
    }

    public static void push(String word, int x) {
        if (x == 1)
            stringArray1[++top1] = word;
        else
            stringArray2[++top2] = word;
    }

    public static String pop(int x) {
        if (x == 1)
            return stringArray1[top1--];
        else
            return stringArray2[top2--];
    }

    public static void doPermute() {

        for (int j = strlength; j >= 2; j--)
            popper(j);

    }

    public static void popper(int length) {
        // pop from stack1 , rotate each word n times and push to stack 2
        if (top1 > -1) {
            while (top1 > -1) {
                word = pop(1);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 2);
                }
            }
        }
        // pop from stack2 , rotate each word n times w.r.t position and push to
        // stack 1
        else {
            while (top2 > -1) {
                word = pop(2);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 1);
                }
            }
        }

    }

    public static void rotate(int position) {
        char[] charstring = new char[100];
        for (int j = 0; j < word.length(); j++)
            charstring[j] = word.charAt(j);

        int startpos = strlength - position;
        char temp = charstring[startpos];
        for (int i = startpos; i < strlength - 1; i++) {
            charstring[i] = charstring[i + 1];
        }
        charstring[strlength - 1] = temp;
        word = new String(charstring).trim();
    }

    public static void display() {
        int top;
        if (top1 > -1) {
            while (top1 > -1)
                System.out.println(stringArray1[top1--]);
        } else {
            while (top2 > -1)
                System.out.println(stringArray2[top2--]);
        }
    }
}

Questions:
Answers:

We can use factorial to find how many strings started with particular letter.

Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.

static public int facts(int x){
    int sum = 1;
    for (int i = 1; i < x; i++) {
        sum *= (i+1);
    }
    return sum;
}

public static void permutation(String str) {
    char[] str2 = str.toCharArray();
    int n = str2.length;
    int permutation = 0;
    if (n == 1) {
        System.out.println(str2[0]);
    } else if (n == 2) {
        System.out.println(str2[0] + "" + str2[1]);
        System.out.println(str2[1] + "" + str2[0]);
    } else {
        for (int i = 0; i < n; i++) {
            if (true) {
                char[] str3 = str.toCharArray();
                char temp = str3[i];
                str3[i] = str3[0];
                str3[0] = temp;
                str2 = str3;
            }

            for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
                if (j != n-1) {
                    char temp1 = str2[j+1];
                    str2[j+1] = str2[j];
                    str2[j] = temp1;
                } else {
                    char temp1 = str2[n-1];
                    str2[n-1] = str2[1];
                    str2[1] = temp1;
                    j = 1;
                } // end of else block
                permutation++;
                System.out.print("permutation " + permutation + " is   -> ");
                for (int k = 0; k < n; k++) {
                    System.out.print(str2[k]);
                } // end of loop k
                System.out.println();
            } // end of loop j
        } // end of loop i
    }
}

Questions:
Answers:

Here is a java implementation:

/* All Permutations of a String */

import java.util.*;
import java.lang.*;
import java.io.*;

/* Complexity O(n*n!) */
class Ideone
{
     public static ArrayList<String> strPerm(String str, ArrayList<String> list)
     {
        int len = str.length();
        if(len==1){
            list.add(str);
            return list;
        }

        list = strPerm(str.substring(0,len-1),list);
        int ls = list.size();
        char ap = str.charAt(len-1);
        for(int i=0;i<ls;i++){
            String temp = list.get(i);
            int tl = temp.length();
            for(int j=0;j<=tl;j++){
                list.add(temp.substring(0,j)+ap+temp.substring(j,tl));  
            }
        }

        while(true){
            String temp = list.get(0);
            if(temp.length()<len)
                list.remove(temp);
            else
                break;
        }

        return list;
    }

    public static void main (String[] args) throws java.lang.Exception
    {
        String str = "abc";
        ArrayList<String> list = new ArrayList<>();

        list = strPerm(str,list);
        System.out.println("Total Permutations : "+list.size());
        for(int i=0;i<list.size();i++)
            System.out.println(list.get(i));

    }
}

http://ideone.com/nWPb3k

Questions:
Answers:

Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.

Here is a good information about this algorihtm.

For C# developers here is more useful implementation.

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

This algorithm has O(N) time and space complexity to calculate each permutation.

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

Questions:
Answers:

Java implementation without recursion

public Set<String> permutate(String s){
    Queue<String> permutations = new LinkedList<String>();
    Set<String> v = new HashSet<String>();
    permutations.add(s);

    while(permutations.size()!=0){
        String str = permutations.poll();
        if(!v.contains(str)){
            v.add(str);
            for(int i = 0;i<str.length();i++){
                String c = String.valueOf(str.charAt(i));
                permutations.add(str.substring(i+1) + c +  str.substring(0,i));
            }
        }
    }
    return v;
}

Questions:
Answers:

//insert each character into an arraylist

static ArrayList al = new ArrayList();

private static void findPermutation (String str){
    for (int k = 0; k < str.length(); k++) {
        addOneChar(str.charAt(k));
    }
}

//insert one char into ArrayList
private static void addOneChar(char ch){
    String lastPerStr;
    String tempStr;
    ArrayList locAl = new ArrayList();
    for (int i = 0; i < al.size(); i ++ ){
        lastPerStr = al.get(i).toString();
        //System.out.println("lastPerStr: " + lastPerStr);
        for (int j = 0; j <= lastPerStr.length(); j++) {
            tempStr = lastPerStr.substring(0,j) + ch + 
                    lastPerStr.substring(j, lastPerStr.length());
            locAl.add(tempStr);
            //System.out.println("tempStr: " + tempStr);
        }
    }
    if(al.isEmpty()){
        al.add(ch);
    } else {
        al.clear();
        al = locAl;
    }
}

private static void printArrayList(ArrayList al){
    for (int i = 0; i < al.size(); i++) {
        System.out.print(al.get(i) + "  ");
    }
}

Questions:
Answers:

Improved Code for the same

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

Questions:
Answers:
/*
     * eg: abc =>{a,bc},{b,ac},{c,ab}
     * =>{ca,b},{cb,a}
     * =>cba,cab
     * =>{ba,c},{bc,a}
     * =>bca,bac
     * =>{ab,c},{ac,b}
     * =>acb,abc
     */
    public void nonRecpermute(String prefix, String word)
    {
        String[] currentstr ={prefix,word};
        Stack<String[]> stack = new Stack<String[]>();
        stack.add(currentstr);
        while(!stack.isEmpty())
        {
            currentstr = stack.pop();
            String currentPrefix = currentstr[0];
            String currentWord = currentstr[1];
            if(currentWord.equals(""))
            {
                System.out.println("Word ="+currentPrefix);
            }
            for(int i=0;i<currentWord.length();i++)
            {
                String[] newstr = new String[2];
                newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
                newstr[1] = currentWord.substring(0, i);
                if(i<currentWord.length()-1)
                {
                    newstr[1] = newstr[1]+currentWord.substring(i+1);
                }
                stack.push(newstr);
            }

        }

    }

Questions:
Answers:

This can be done iteratively by simply inserting each letter of the string in turn in all locations of the previous partial results.

We start with [A], which with B becomes [BA, AB], and with C, [CBA, BCA, BAC, CAB, etc].

The running time would be O(n!), which, for the test case ABCD, is 1 x 2 x 3 x 4.

In the above product, the 1 is for A, the 2 is for B, etc.

Dart sample:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

Questions:
Answers:

Here are two c# versions (just for reference):
1. Prints all permuations
2. returns all permutations

Basic gist of the algorithm is (probably below code is more intuitive – nevertheless, here is some explanation of what below code does):
– from the current index to for the rest of the collection, swap the element at current index
– get the permutations for the remaining elements from next index recursively
– restore the order, by re-swapping

Note: the above recursive function will be invoked from the start index.

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

version 2 (same as above – but returns the permutations in lieu of printing)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

Unit Tests

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

Questions:
Answers:

Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:

  1. Easy to understand
  2. Easy to avoid duplication
  3. The output is sorted

Here is the java code:

List<String> permute(String str) {
  if (str == null) {
    return null;
  }

  char[] chars = str.toCharArray();
  boolean[] used = new boolean[chars.length];

  List<String> res = new ArrayList<String>();
  StringBuilder sb = new StringBuilder();

  Arrays.sort(chars);

  helper(chars, used, sb, res);

  return res;
}

void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
  if (sb.length() == chars.length) {
    res.add(sb.toString());
    return;
  }

  for (int i = 0; i < chars.length; i++) {
    // avoid duplicates
    if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
      continue;
    }

    // pick the character that has not used yet
    if (!used[i]) {
      used[i] = true;
      sb.append(chars[i]);

      helper(chars, used, sb, res);

      // back tracking
      sb.deleteCharAt(sb.length() - 1);
      used[i] = false;
    }
  }
}

Input str: 1231

Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}

Noticed that the output is sorted, and there is no duplicate result.

Questions:
Answers:

This is a C solution:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>


char* addLetter(char* string, char *c) {
    char* result = malloc(sizeof(string) + 2);
    strcpy(result, string);
    strncat(result, c, 1);
    return result;
}

char* removeLetter(char* string, char *c) {
    char* result = malloc(sizeof(string));
    int j = 0;
    for (int i = 0; i < strlen(string); i++) {
        if (string[i] != *c) {
            result[j++] = string[i];
        }
    }
    result[j] = '
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
char* addLetter(char* string, char *c) {
char* result = malloc(sizeof(string) + 2);
strcpy(result, string);
strncat(result, c, 1);
return result;
}
char* removeLetter(char* string, char *c) {
char* result = malloc(sizeof(string));
int j = 0;
for (int i = 0; i < strlen(string); i++) {
if (string[i] != *c) {
result[j++] = string[i];
}
}
result[j] = '\0';
return result;
}
void makeAnagram(char *anagram, char *letters) {
if (*letters == '\0') {
printf("%s\n", anagram);
return;
}
char *c = letters;
while (*c != '\0') {
makeAnagram(addLetter(anagram, c),
removeLetter(letters, c));
c++;
}
}
int main() {
makeAnagram("", "computer");
return 0;
}
'; return result; } void makeAnagram(char *anagram, char *letters) { if (*letters == '
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
char* addLetter(char* string, char *c) {
char* result = malloc(sizeof(string) + 2);
strcpy(result, string);
strncat(result, c, 1);
return result;
}
char* removeLetter(char* string, char *c) {
char* result = malloc(sizeof(string));
int j = 0;
for (int i = 0; i < strlen(string); i++) {
if (string[i] != *c) {
result[j++] = string[i];
}
}
result[j] = '\0';
return result;
}
void makeAnagram(char *anagram, char *letters) {
if (*letters == '\0') {
printf("%s\n", anagram);
return;
}
char *c = letters;
while (*c != '\0') {
makeAnagram(addLetter(anagram, c),
removeLetter(letters, c));
c++;
}
}
int main() {
makeAnagram("", "computer");
return 0;
}
') { printf("%s\n", anagram); return; } char *c = letters; while (*c != '
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
char* addLetter(char* string, char *c) {
char* result = malloc(sizeof(string) + 2);
strcpy(result, string);
strncat(result, c, 1);
return result;
}
char* removeLetter(char* string, char *c) {
char* result = malloc(sizeof(string));
int j = 0;
for (int i = 0; i < strlen(string); i++) {
if (string[i] != *c) {
result[j++] = string[i];
}
}
result[j] = '\0';
return result;
}
void makeAnagram(char *anagram, char *letters) {
if (*letters == '\0') {
printf("%s\n", anagram);
return;
}
char *c = letters;
while (*c != '\0') {
makeAnagram(addLetter(anagram, c),
removeLetter(letters, c));
c++;
}
}
int main() {
makeAnagram("", "computer");
return 0;
}
') { makeAnagram(addLetter(anagram, c), removeLetter(letters, c)); c++; } } int main() { makeAnagram("", "computer"); return 0; }

Questions:
Answers:

My implementation based on Mark Byers’s description above:

    static Set<String> permutations(String str){
        if (str.isEmpty()){
            return Collections.singleton(str);
        }else{
            Set <String> set = new HashSet<>();
            for (int i=0; i<str.length(); i++)
                for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
                    set.add(str.charAt(i) + s);
            return set;
        }
    }