Home » Python » n-grams in python, four, five, six grams?

n-grams in python, four, five, six grams?

Posted by: admin November 29, 2017 Leave a comment


I’m looking for a way to split a text into n-grams.
Normally I would do something like:

import nltk
from nltk import bigrams
string = "I really like python, it's pretty awesome."
string_bigrams = bigrams(string)
print string_bigrams

I am aware that nltk only offers bigrams and trigrams, but is there a way to split my text in four-grams, five-grams or even hundred-grams?



Great native python based answers given by other users. But here’s the NLTK approach (just in case, the OP gets penalized for reinventing what’s already existing in the NLTK library).

There is an ngram module (http://www.nltk.org/_modules/nltk/model/ngram.html) that people seldom use in NLTK. It’s not because it’s hard to read ngrams but training a model base on >3grams will result in much data sparsity.

from nltk import ngrams
sentence = 'this is a foo bar sentences and i want to ngramize it'
n = 6
sixgrams = ngrams(sentence.split(), n)
for grams in sixgrams:
  print grams


I’m surprised that this hasn’t shown up yet:

In [34]: sentence = "I really like python, it's pretty awesome.".split()

In [35]: N = 4

In [36]: grams = [sentence[i:i+N] for i in xrange(len(sentence)-N+1)]

In [37]: for gram in grams: print gram
['I', 'really', 'like', 'python,']
['really', 'like', 'python,', "it's"]
['like', 'python,', "it's", 'pretty']
['python,', "it's", 'pretty', 'awesome.']


here is another simple way for do n-grams

>>> from nltk.util import ngrams
>>> text = "I am aware that nltk only offers bigrams and trigrams, but is there a way to split my text in four-grams, five-grams or even hundred-grams"
>>> tokenize = nltk.word_tokenize(text)
>>> tokenize
['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
>>> bigrams = ngrams(tokenize,2)
>>> bigrams
[('I', 'am'), ('am', 'aware'), ('aware', 'that'), ('that', 'nltk'), ('nltk', 'only'), ('only', 'offers'), ('offers', 'bigrams'), ('bigrams', 'and'), ('and', 'trigrams'), ('trigrams', ','), (',', 'but'), ('but', 'is'), ('is', 'there'), ('there', 'a'), ('a', 'way'), ('way', 'to'), ('to', 'split'), ('split', 'my'), ('my', 'text'), ('text', 'in'), ('in', 'four-grams'), ('four-grams', ','), (',', 'five-grams'), ('five-grams', 'or'), ('or', 'even'), ('even', 'hundred-grams')]
>>> trigrams=ngrams(tokenize,3)
>>> trigrams
[('I', 'am', 'aware'), ('am', 'aware', 'that'), ('aware', 'that', 'nltk'), ('that', 'nltk', 'only'), ('nltk', 'only', 'offers'), ('only', 'offers', 'bigrams'), ('offers', 'bigrams', 'and'), ('bigrams', 'and', 'trigrams'), ('and', 'trigrams', ','), ('trigrams', ',', 'but'), (',', 'but', 'is'), ('but', 'is', 'there'), ('is', 'there', 'a'), ('there', 'a', 'way'), ('a', 'way', 'to'), ('way', 'to', 'split'), ('to', 'split', 'my'), ('split', 'my', 'text'), ('my', 'text', 'in'), ('text', 'in', 'four-grams'), ('in', 'four-grams', ','), ('four-grams', ',', 'five-grams'), (',', 'five-grams', 'or'), ('five-grams', 'or', 'even'), ('or', 'even', 'hundred-grams')]
>>> fourgrams=ngrams(tokenize,4)
>>> fourgrams
[('I', 'am', 'aware', 'that'), ('am', 'aware', 'that', 'nltk'), ('aware', 'that', 'nltk', 'only'), ('that', 'nltk', 'only', 'offers'), ('nltk', 'only', 'offers', 'bigrams'), ('only', 'offers', 'bigrams', 'and'), ('offers', 'bigrams', 'and', 'trigrams'), ('bigrams', 'and', 'trigrams', ','), ('and', 'trigrams', ',', 'but'), ('trigrams', ',', 'but', 'is'), (',', 'but', 'is', 'there'), ('but', 'is', 'there', 'a'), ('is', 'there', 'a', 'way'), ('there', 'a', 'way', 'to'), ('a', 'way', 'to', 'split'), ('way', 'to', 'split', 'my'), ('to', 'split', 'my', 'text'), ('split', 'my', 'text', 'in'), ('my', 'text', 'in', 'four-grams'), ('text', 'in', 'four-grams', ','), ('in', 'four-grams', ',', 'five-grams'), ('four-grams', ',', 'five-grams', 'or'), (',', 'five-grams', 'or', 'even'), ('five-grams', 'or', 'even', 'hundred-grams')]


Using only nltk tools

from nltk.tokenize import word_tokenize
from nltk.util import ngrams

def get_ngrams(text, n ):
    n_grams = ngrams(word_tokenize(text), n)
    return [ ' '.join(grams) for grams in n_grams]

Example output

get_ngrams('This is the simplest text i could think of', 3 )

['This is the', 'is the simplest', 'the simplest text', 'simplest text i', 'text i could', 'i could think', 'could think of']

In order to keep the ngrams in array format just remove ' '.join


You can easily whip up your own function to do this using itertools:

from itertools import izip, islice, tee
s = 'spam and eggs'
N = 3
trigrams = izip(*(islice(seq, index, None) for index, seq in enumerate(tee(s, N))))
# [('s', 'p', 'a'), ('p', 'a', 'm'), ('a', 'm', ' '),
# ('m', ' ', 'a'), (' ', 'a', 'n'), ('a', 'n', 'd'),
# ('n', 'd', ' '), ('d', ' ', 'e'), (' ', 'e', 'g'),
# ('e', 'g', 'g'), ('g', 'g', 's')]


I have never dealt with nltk but did N-grams as part of some small class project. If you want to find the frequency of all N-grams occurring in the string, here is a way to do that. D would give you the histogram of your N-words.

D = dict()
string = 'whatever string...'
strparts = string.split()
for i in range(len(strparts)-N): # N-grams
        D[tuple(strparts[i:i+N])] += 1
        D[tuple(strparts[i:i+N])] = 1


For four_grams it is already in NLTK, here is a piece of code that can help you toward this:

 from nltk.collocations import *
 import nltk
 #You should tokenize your text
 text = "I do not like green eggs and ham, I do not like them Sam I am!"
 tokens = nltk.wordpunct_tokenize(text)
 for fourgram, freq in fourgrams.ngram_fd.items():  
       print fourgram, freq

I hope it helps.


A more elegant approach to build bigrams with python’s builtin zip().
Simply convert the original string into a list by split(), then pass the list once normally and once offset by one element.

string = "I really like python, it's pretty awesome."

def find_bigrams(s):
    input_list = s.split(" ")
    return zip(input_list, input_list[1:])

def find_ngrams(s, n):
  input_list = s.split(" ")
  return zip(*[input_list[i:] for i in range(n)])


[('I', 'really'), ('really', 'like'), ('like', 'python,'), ('python,', "it's"), ("it's", 'pretty'), ('pretty', 'awesome.')]


You can use sklearn.feature_extraction.text.CountVectorizer:

import sklearn.feature_extraction.text # FYI http://scikit-learn.org/stable/install.html
ngram_size = 4
string = ["I really like python, it's pretty awesome."]
vect = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(ngram_size,ngram_size))
print('{1}-grams: {0}'.format(vect.get_feature_names(), ngram_size))


4-grams: [u'like python it pretty', u'python it pretty awesome', u'really like python it']

You can set to ngram_size to any positive integer. I.e. you can split a text in four-grams, five-grams or even hundred-grams.


Nltk is great, but sometimes is a overhead for some projects:

import re
def tokenize(text, ngrams=1):
    text = re.sub(r'[\b\(\)\\"\'\/\[\]\s+\,\.:\?;]', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    tokens = text.split()
    return [tuple(tokens[i:i+ngrams]) for i in xrange(len(tokens)-ngrams+1)]

Example use:

>> text = "This is an example text"
>> tokenize(text, 2)
[('This', 'is'), ('is', 'an'), ('an', 'example'), ('example', 'text')]
>> tokenize(text, 3)
[('This', 'is', 'an'), ('is', 'an', 'example'), ('an', 'example', 'text')]