Home » Python » TensorFlow: “Attempting to use uninitialized value” in variable initialization

TensorFlow: “Attempting to use uninitialized value” in variable initialization

Posted by: admin April 4, 2018 Leave a comment

Questions:

I am trying to implement multivariate linear regression in Python using TensorFlow, but have run into some logical and implementation issues. My code throws the following error:

Attempting to use uninitialized value Variable
Caused by op u'Variable/read'

Ideally the weights output should be [2, 3]

def hypothesis_function(input_2d_matrix_trainingexamples,
                        output_matrix_of_trainingexamples,
                        initial_parameters_of_hypothesis_function,
                        learning_rate, num_steps):
    # calculate num attributes and num examples
    number_of_attributes = len(input_2d_matrix_trainingexamples[0])
    number_of_trainingexamples = len(input_2d_matrix_trainingexamples)

    #Graph inputs
    x = []
    for i in range(0, number_of_attributes, 1):
        x.append(tf.placeholder("float"))
    y_input = tf.placeholder("float")

    # Create Model and Set Model weights
    parameters = []
    for i in range(0, number_of_attributes, 1):
        parameters.append(
            tf.Variable(initial_parameters_of_hypothesis_function[i]))

    #Contruct linear model
    y = tf.Variable(parameters[0], "float")
    for i in range(1, number_of_attributes, 1):
        y = tf.add(y, tf.multiply(x[i], parameters[i]))

    # Minimize the mean squared errors
    loss = tf.reduce_mean(tf.square(y - y_input))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    train = optimizer.minimize(loss)

    #Initialize the variables
    init = tf.initialize_all_variables()

    # launch the graph
    session = tf.Session()
    session.run(init)
    for step in range(1, num_steps + 1, 1):
        for i in range(0, number_of_trainingexamples, 1):
            feed = {}
            for j in range(0, number_of_attributes, 1):
                array = [input_2d_matrix_trainingexamples[i][j]]
                feed[j] = array
            array1 = [output_matrix_of_trainingexamples[i]]
            feed[number_of_attributes] = array1
            session.run(train, feed_dict=feed)

    for i in range(0, number_of_attributes - 1, 1):
        print (session.run(parameters[i]))

array = [[0.0, 1.0, 2.0], [0.0, 2.0, 3.0], [0.0, 4.0, 5.0]]
hypothesis_function(array, [8.0, 13.0, 23.0], [1.0, 1.0, 1.0], 0.01, 200)
Answers:

It’s not 100% clear from the code example, but if the list initial_parameters_of_hypothesis_function is a list of tf.Variable objects, then the line session.run(init) will fail because TensorFlow isn’t (yet) smart enough to figure out the dependencies in variable initialization. To work around this, you should change the loop that creates parameters to use initial_parameters_of_hypothesis_function[i].initialized_value(), which adds the necessary dependency:

parameters = []
for i in range(0, number_of_attributes, 1):
    parameters.append(tf.Variable(
        initial_parameters_of_hypothesis_function[i].initialized_value()))

Questions:
Answers:

Run this:

init = tf.global_variables_initializer()
sess.run(init)

Or (depending on the version of TF that you have):

init = tf.initialize_all_variables()
sess.run(init)

Questions:
Answers:

There is another the error happening which related to the order when calling initializing global variables. I’ve had the sample of code has similar error FailedPreconditionError (see above for traceback): Attempting to use uninitialized value W

def linear(X, n_input, n_output, activation = None):
    W = tf.Variable(tf.random_normal([n_input, n_output], stddev=0.1), name='W')
    b = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[n_output]), name='b')
    if activation != None:
        h = tf.nn.tanh(tf.add(tf.matmul(X, W),b), name='h')
    else:
        h = tf.add(tf.matmul(X, W),b, name='h')
    return h

from tensorflow.python.framework import ops
ops.reset_default_graph()
g = tf.get_default_graph()
print([op.name for op in g.get_operations()])
with tf.Session() as sess:
    # RUN INIT
    sess.run(tf.global_variables_initializer())
    # But W hasn't in the graph yet so not know to initialize 
    # EVAL then error
    print(linear(np.array([[1.0,2.0,3.0]]).astype(np.float32), 3, 3).eval())

You should change to following

from tensorflow.python.framework import ops
ops.reset_default_graph()
g = tf.get_default_graph()
print([op.name for op in g.get_operations()])
with tf.Session() as 
    # NOT RUNNING BUT ASSIGN
    l = linear(np.array([[1.0,2.0,3.0]]).astype(np.float32), 3, 3)
    # RUN INIT
    sess.run(tf.global_variables_initializer())
    print([op.name for op in g.get_operations()])
    # ONLY EVAL AFTER INIT
    print(l.eval(session=sess))

Questions:
Answers:

I want to give my resolution, it work when i replace the line [session = tf.Session()] with [sess = tf.InteractiveSession()]. Hope this will be useful to others.

Questions:
Answers:

Normally there are two ways of initializing variables, 1) using the sess.run(tf.global_variables_initializer()) as the previous answers noted; 2) the load the graph from checkpoint.

You can do like this:

sess = tf.Session(config=config)
saver = tf.train.Saver(max_to_keep=3)
try:
    saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model_dir))
    # start from the latest checkpoint, the sess will be initialized 
    # by the variables in the latest checkpoint
except ValueError:
    # train from scratch
    init = tf.global_variables_initializer()
    sess.run(init)

And the third method is to use the tf.train.Supervisor. The session will be

Create a session on ‘master’, recovering or initializing the model as needed, or wait for a session to be ready.

sv = tf.train.Supervisor([parameters])
sess = sv.prepare_or_wait_for_session()