Home » Java » Why is there no SortedList in Java?

Why is there no SortedList in Java?

Posted by: admin November 2, 2017 Leave a comment

Questions:

In Java there are the SortedSet and SortedMap interfaces. Both belong to Java’s standard Collections framework and provide a sorted way to access the elements.

However, in my understanding there is no SortedList in Java. You can use java.util.Collections.sort() to sort a list.

Any idea why it is designed like that?

Answers:

List iterators guarantee first and foremost that you get the list’s elements in the internal order of the list (aka. insertion order). More specifically it is in the order you’ve inserted the elements or on how you’ve manipulated the list. Sorting can be seen as a manipulation of the data structure, and there are several ways to sort the list.

I’ll order the ways in the order of usefulness as I personally see it:

1. Consider using Set or Bag collections instead

NOTE: I put this option at the top because this is what you normally want to do anyway.

A sorted set automatically sorts the collection at insertion, meaning that it does the sorting while you add elements into the collection. It also means you don’t need to manually sort it.

Furthermore if you are sure that you don’t need to worry about (or have) duplicate elements then you can use the TreeSet<T> instead. It implements SortedSet and NavigableSet interfaces and works as you’d probably expect from a list:

TreeSet<String> set = new TreeSet<String>();
set.add("lol");
set.add("cat");
// automatically sorts natural order when adding

for (String s : set) {
    System.out.println(s);
}
// Prints out "cat" and "lol"

If you don’t want the natural ordering you can use the constructor parameter that takes a Comparator<T>.

Alternatively you can use Multisets (also known as Bags), that is a Set that allows duplicate elements, instead and there are third party implementations of them. Most notably from the Guava libraries there is a TreeMultiset, that works a lot like the TreeSet.

2. Sort your list with Collections.sort()

As mentioned above, sorting of Lists is an manipulation of the data structure. So for situations where you need “one source of truth” that will be sorted in a variety of ways then sorting it manually is the way to go.

You can sort your list with the java.util.Collections.sort() method. Here is a code sample on how:

List<String> strings = new ArrayList<String>()
strings.add("lol");
strings.add("cat");

Collections.sort(strings);
for (String s : strings) {
    System.out.println(s);
}
// Prints out "cat" and "lol"

Using comparators

One clear benefit is that you may use Comparator in the sort method. Java also provides some implementations for the Comparator such as the Collator which is useful for locale sensitive sorting strings. Here is one example:

Collator usCollator = Collator.getInstance(Locale.US);
usCollator.setStrength(Collator.PRIMARY); // ignores casing

Collections.sort(strings, usCollator);

Sorting in concurrent environments

Do note though that using the sort method is not friendly in concurrent environments, since the collection instance will be manipulated, and you should consider using immutable collections instead. This is something Guava provides in the Ordering class and is a simple one-liner:

List<string> sorted = Ordering.natural().sortedCopy(strings);

3. Wrap your list with java.util.PriorityQueue

Though there is no sorted list in Java there is however a sorted queue which would probably work just as well for you. It is the java.util.PriorityQueue class.

Nico Haase linked in the comments to a related question that also answers this.

In a sorted collection you most likely don’t want to manipulate the internal data structure which is why PriorityQueue doesn’t implement the List interface (because that would give you direct access to it’s elements).

Caveat on the PriorityQueue iterator

The PriorityQueue class implements the Iterable<E> and Collection<E> interfaces so it can be iterated as usual. However the iterator is not guaranteed to return elements in the sorted order. Instead (as Alderath points out in the comments) you need to poll() the queue until empty.

Note that you can convert a list to a priority queue via the constructor that takes any collection:

List<String> strings = new ArrayList<String>()
strings.add("lol");
strings.add("cat");

PriorityQueue<String> sortedStrings = new PriorityQueue(strings);
while(!sortedStrings.isEmpty()) {
    System.out.println(sortedStrings.poll());
}
// Prints out "cat" and "lol"

4. Write your own SortedList class

NOTE: You shouldn’t have to do this.

You can write your own List class that sorts each time you add a new element. This can get rather computation heavy depending on your implementation and is pointless, unless you want to do it as an exercise, because of two main reasons:

  1. It breaks the contract that List<E> interface has, because the add methods should ensure that the element will reside in the index that the user specifies.
  2. Why reinvent the wheel? You should be using the TreeSet or Multisets instead as pointed out in the first point above.

However if you want to do it as an exercise here is a code sample to get you started, it uses the AbstractList abstract class:

public class SortedList<E> extends AbstractList<E> {

    private ArrayList<E> internalList = new ArrayList<E>();

    // Note that add(E e) in AbstractList is calling this one
    @Override 
    public void add(int position, E e) {
        internalList.add(e);
        Collections.sort(internalList, null);
    }

    @Override
    public E get(int i) {
        return internalList.get(i);
    }

    @Override
    public int size() {
        return internalList.size();
    }

}

Note that if you haven’t overridden the methods you need, then the default implementations from AbstractList will throw UnsupportedOperationExceptions.

Questions:
Answers:

Because the concept of a List is incompatible with the concept of an automatically sorted collection. The point of a List is that after calling list.add(7, elem), a call to list.get(7) will return elem. With an auto-sorted list, the element could end up in an arbitrary position.

Questions:
Answers:

Since all lists are already “sorted” by the order the items were added (FIFO ordering), you can “resort” them with another ordering, including the natural ordering of elements, using java.util.Collections.sort().

EDIT:

Lists as data structures are based in what is interesting is the ordering in which the items where inserted.

Sets do not have that information.

If you want to order by addition time, use List. If you want to order by other criteria, use SortedSet.

Questions:
Answers:

For any newcomers, as of April 2015, Android now has a SortedList class in the support library, designed specifically to work with RecyclerView. Here’s the blog post about it.

Questions:
Answers:

Set and Map are non-linear data structure. List is linear data structure.

enter image description here


The tree data structure SortedSet and SortedMap interfaces implements TreeSet and TreeMap respectively using used Red-Black tree implementation algorithm. So it ensure that there are no duplicated items (or keys in case of Map).

  • Tree by definition cannot contain duplicates.
  • In List we can have duplicates, so there is no TreeList.

So if we want to sort the list we have to use java.util.Collections.sort().

Questions:
Answers:

Another point is the time complexity of insert operations.
For a list insert, one expects a complexity of O(1).
But this could not be guaranteed with a sorted list.

And the most important point is that lists assume nothing about their elements.
For example, you can make lists of things that do not implement equals or compare.

Questions:
Answers:

Though it took a while, Java 8 does have a sorted List.
http://docs.oracle.com/javase/8/javafx/api/javafx/collections/transformation/SortedList.html

As you can see in the javadocs, it is part of the JavaFX collections, intended to provide a sorted view on an ObservableList.

Questions:
Answers:

Think of it like this: the List interface has methods like add(int index, E element), set(int index, E element). The contract is that once you added an element at position X you will find it there unless you add or remove elements before it.

If any list implementation would store elements in some order other than based on the index, the above list methods would make no sense.

Questions:
Answers:

First line in the List API says it is an ordered collection (also known as a sequence). If you sort the list you can’t maintain the order, so there is no TreeList in Java.
As API says Java List got inspired from Sequence and see the sequence properties http://en.wikipedia.org/wiki/Sequence_(mathematics)

It doesn’t mean that you can’t sort the list, but Java strict to his definition and doesn’t provide sorted versions of lists by default.

Questions:
Answers:

Consider using indexed-tree-map . It’s an enhanced JDK’s TreeSet that provides access to element by index and finding the index of an element without iteration or hidden underlying lists that back up the tree. The algorithm is based on updating weights of changing nodes every time there is a change.